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Abstract 

A new cellular automaton combat model called MANA is examined for evidence of 
behavior that produces fractal data. Examination of the temporal distribution of 
information flow (contact reports) shows clear fractal structure. This appears to result 
from the reaction of the model entities to the growth of disorder. The personality rules of 
the entities react in such a way that fractal distributions are formed, or at least, this 
appears to be one way in which the forces can mitigate the impact of disorder. 
Interestingly, while in such a formation, the entropy of the battlefield is dependent on the 
scale at which it is examined. We speculate that this says something fundamental about 
the dynamics of complex adaptive systems. It is hypothesized that such formations in a 
military case effectively act to isolate the highest level of command from the lowest. For 
the model runs examined, disorder can often grow for one force to the point where it can 
no longer maintain a fractal-like distribution. In this case, the distribution tends to 
become uniformly random, and the force appears to be finished as an effective unit. 
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1. Introduction 
In an earlier report1, we presented a study on the application of fractal methods to 
describe cellular automaton combat models. That study was in turn motivated by a 
paper2 that argued that the complex nature of combat was likely to result in fractal-like 
distributions for many measurable aspects, for example, distribution of forces, 
distribution of casualties in time, distribution of radio traffic etc. 

There certainly seems to be evidence, as reported by Richardson3,4, Dockery and 
Woodcock5, and Roberts and Torcotte6, which supports the idea that combat statistics 
obey fractal-like power laws. 

For example, the number of battles on the Western front after Normandy where 
casualties exceeded some level, C, obeyed a power-law distribution dependent on C, 
i.e.: 

 D
C CN −

> ∝casualties  (1) 

where 1≈D  in this case5. 

Our most recent studies were primarily intended to address some concerns with our 
original report. Foremost of these were the extent to which the distributions presented 
could be called fractals. Clearly, in some cases, the fractal “scaling range” was quite 
short, and it might be questioned whether this qualifies as a fractal. In particular, the 
use of fractals to describe the distribution of a small number of entities can be quite 
tenuous, simply because they do not provide much of a pattern to analyze.  

We wish to make it clear that we simply used fractals as a tool to describe the 
distributions of the measured signals. We do not mean that the data are literally a 
fractal, or that some fractal “process” created the distributions. Importantly, we will 
see in this paper that the fractal structures hinted at in the earlier work become much 
more evident when applied to high-traffic-rate data, such as contact reports. 

2. The MANA model 
For this report we introduce a new cellular automaton combat model, called MANA 
(Map Aware Non-uniform Automata). MANA is different from traditional CA 
models, in that it allows a range of global interactions as well as local.  

MANA, at least superficially, bears a strong resemblance to the widely distributed 
ISAAC model7,8. In each model, the automata’s behaviors are governed by sets of 
parameters that determine their propensity to move towards friendly or enemy units, 
and towards an objective. A further set of parameters act as conditional modifiers to 
this process. For example, an “advance” parameter prevents automata from moving 
toward their objectives without a minimum number of friendly units within sensor 
range. A final set of parameters describes the basic capabilities of automata, such as 
weapons range, sensor range, movement rate, etc.  

MANA differs from ISAAC in that it allows a greater range of triggers to cause a 
change in an entity’s personality. For example, a contact with an enemy, a shot being 
fired, reaching a goal point, and becoming injured may all change an automaton’s 
personality.  
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MANA also places greater emphasis on global interactions, by providing each side 
with a “memory map”, which is used to mark the locations of enemies. The entities 
thus react to both enemies that they see, and enemies they “remember”. 

MANA entities use a penalty function to rank possible moves, based on their 
personality rules. If several moves have a similarly low penalty, a move is chosen at 
random from the best moves. A “movement precision” parameter sets how wide the 
margin should be for accepting similarly good moves. By introducing this randomness 
we are notionally representing small differences in the personality, or “mood”, of the 
automata. 

The impact of these features produces much more realistic looking behavior over 
longer periods of time than was possible with the early versions of ISAAC.  

In this report, two cases will be examined, for each of which there are 40 automata on 
each side: 

(i) All shooters are able to see and shoot at any enemy, with no maneuvering 
occurring (we refer to this as the “Lanchester case”, due to the similarity to the 
stochastic version of the widely used Lanchester model of combat9).  

(ii) Each force is attracted towards a goal behind its enemy. Initially, neither force 
is in contact with the other. No automaton may advance without the presence 
of at least four friendly units within sensor range. If in contact with the enemy, 
then 8 friendly units are required to be within sensor range to advance. If an 
automaton is unable to advance due to lack of support, it will retreat. Once out 
of enemy contact, it is possible for retreating automata to “regroup”, since they 
then only require 4 nearby friends to advance again. 

Unfortunately, the details of the MANA model and the parameters used are too 
complex to discuss in any more depth in this report. However, the authors will provide 
copies of the model and the data examined here on request. Additionally, the model, 
including the scenario sets used here, is available to be downloaded on the Website (to 
be determined). 

These two cases provide an interesting contrast. The first case represents “robotic” 
fighters, who will fight to the death. The second case is designed to be vulnerable to 
the effects of disorder. In reality, troops do not fight to the death, but will generally 
fight provided there is sufficient order within their ranks. Real armies do not 
necessarily behave in the way we have modeled the forces here, but undoubtedly there 
are similar structures within armies which once disrupted cause them to fall into 
aimless retreat (an example is the collapse of the German armies in Western Europe 
during World War II, as described in US Gen Bradley’s book10). 

3. Fractal nature of MANA model data 
The main purpose of this paper is to present new data that expands upon these 
previous findings. Rather than examine the distribution of casualties in time, the 
emphasis shifts to the rate at which information is being gathered about the enemy.  

Define the number of pieces of information one force has about the opposing force at 
time step j as: 
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where in  is the number of enemies the ith automaton in a force of N automata sees. 
Thus if there are M enemy automata all within detection range of N friendly automata, 
I = MN (note that this measure allows multiple counting of contacts). 

Since the number of pieces of information about the enemy is much larger than the 
potential number of casualties, this time series is not so sparsely populated, and hence 
easier to test for evidence of fractal distributions. 

The actual quantity we shall use for this analysis is jjj III −=∆ +1 , which we will 
view as a sort of “informational equivalent” to attrition. 

Figure 1 shows I∆  as a function of time for the two cases described in the previous 
section. In order for data to be fractal, it must exhibit temporal correlations that obey 
power laws. Figure 2 plots the power spectra for both cases. The spectra were obtained 
by taking the first 128 data points from each run, and splitting them into two 64-point 
data sets. Then, 16-point spectra were obtained from each set. This was done for data 
obtained from 20 different runs. The 40 spectra obtained were then averaged to 
produce a single spectrum for each case. 

While the spectrum for the Lanchester case has a power-law slope of nearly 0, case ii 
obeys a power law with a slope of around – 2/3. Thus the latter case shows potential to 
be described by fractals. 

To explore which type of fractal model might be used to characterize this data, the 
time series were analyzed for multifractal behavior. This was done by using 
“multiscaling” analysis. A multiscaling field has statistical moments that depend on 
the resolution at which the field is examined11, i.e.:  
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where jI∆  is the attrition rate at the jth time step, the angled brackets represent an 
ensemble average, t is the temporal resolution at which the distribution is being 
examined, T is the “outer” scale of the scaling range, and K(q) is a non-linear function 
of the order of the statistical moments, q. 

Figure 3 shows how the second-order moment varies as a function of resolution for 
each case. Case ii displays a much steeper slope than case i, and makes a slightly 
better straight line. This suggests that case ii exhibits more convincing multiscaling 
properties than case i. The K(q) function for case ii is shown in Figure 4. The function 
is non-linear in q, at least up to values for q approaching 3. 

The most interesting result obtained from these data is shown in Figure 5. Case ii 
displays a distribution that at least partly obeys a –1 power law. This result is quite 
similar to the observed power law for the after-Normandy World War II data 
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discussed in the introduction. This is particularly so when one might consider each 
entity to represent a battalion, say, and that I∆  is somewhat representative of the 
concurrent level of casualties, since more contacts imply more engagements. Though 
we are not comparing like with like, the data presented here provides tangible 
evidence that cellular automaton combat models can produce power laws extremely 
similar to those observed in real combat data.  

4. Entropy on the battlefield 
Case ii was designed to be sensitive to disorder. It may be useful to think about the 
disorder (entropy) of the distribution of the forces in terms of the change in the level 
of knowledge a commander has about his/her opposition as entities within the 
opposition force are detected.  

We assume that at some starting point, each force is systematically deployed, so that 
knowledge of the location of one entity effectively implies knowledge of the complete 
force. Such a system is in a state of maximal order, since all positions of entities are 
known with 100% probability. 

If combat occurs, the local reactions of entities will cause these formations to become 
distorted. The existence of a power-law spectrum for the jI∆  data, which was seen 
in the preceding section, suggests that the shapes into which the formations evolve 
also have a special kind of distribution, since the power law implies that the data is 
temporally correlated. Specifically, detection of a given entity in a certain time step 
implies a greater chance that a second entity will be detected in the following time 
steps than would have been the case if the enemy entities were randomly distributed. 
Thus, knowledge of the position of one entity increases knowledge about the 
battlefield disproportionately. 

A suitable spatial distribution to produce such behavior is a hierarchy of clusters 
within clusters, conveniently described by a fractal. Similar analysis to that in our 
earlier paper1 could be presented here to demonstrate that the distributions of the 
automata in these runs possess a fractal scaling range. To save space, we will not 
represent such an analysis here, but leave further examination of this issue for further 
research. However, it should come as no surprise that automaton models produce 
fractal distributions, given the well-known results of Bak and Chen12,13.  

An interesting consequence of a fractal-like distribution of the forces is that the 
entropy of the battlefield is now dependent on the scale at which it is examined, i.e.: 

 )(DflS ∝  (5) 

where S is entropy and D is the fractal dimension of the distribution of the forces. 

If we associate different sized regions of radius l with regions of responsibility for 
officers of differing rank, then we can gain a feel for how the disorder created when 
the two forces clash affects the chain of command.  

The highest level of command has knowledge of the battlefield that is much more 
certain (lower apparent entropy) but much less detailed than the lowest level of 
command. The idea that entropy of a complex adaptive system is dependent on the 
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scale it is examined at does not appear to have been considered in previous 
investigations into the use of entropy as a battlefield measure, such as Rodrigues14 and 
Barr and Sherrill15.  

It seems quite likely that this situation says something fundamental about the nature of 
the dynamics of complex adaptive systems. It may lead us, for example, to construct a 
phenomenological view of warfare: 

• During an engagement, the forces involved will begin to become disordered. 

• The personality rules of the automata respond to the growth in disorder. The 
formations distort into shapes more easily describable by fractals than by basic 
Euclidean shapes.  

• Adapting a fractal formation increases disorder (and hence entropy), but does 
not maximize entropy. Furthermore, the entropy of the battlefield becomes 
dependent on the resolution it is examined at. 

There is a final point: 

• If the command hierarchy is fragile, the fractal dimension of the distribution 
will continue to change, until in the limiting case the distribution becomes 
uniformly random. 

This last point is not immediately obvious from the discussion above, but can be easily 
illustrated using a variation of case ii. Here we allow the Blue force to advance in the 
presence of the enemy with only four friends in support (rather than 8). The interesting 
thing about this is, even though this force is now effectively “braver”, it performs 
consistently much worse than the Red force. The reason is that the Red force drops 
back to find enough support (i.e. 8 friends) to make a stand. Initially, it appears Blue is 
driving through Red. However, when Red finds sufficient support, its forces are 
concentrated to the extent that it has more firepower available locally than Blue. The 
different degree of concentration of each force can be described in terms of each force 
adapting a formation with a different fractal dimension (as a result of their differing 
personality rules).  

Figure 6 shows the evolution of this case. The formation into which Red evolves is 
consistently superior to that of Blue, yet has no consistent Euclidean shape. One 
suspects then that the Red and Blue forces evolve into fractal shapes with on-average 
quite different fractal dimensions. Red is then able to cause a catastrophic amount of 
disorder to Blue. At this point, there is no mechanism to prevent the disorder 
continuing to grow. The automata shown in the figure simply continue to move apart. 
When enough runs are examined, it becomes clear that the final Blue distribution 
tends to become uniformly random on average, hence tends to a fractal dimension of 
0.  

5. Discussion and Conclusions 
The data produced by the MANA model and presented here clearly displays fractal 
properties. At least one of these properties is extremely similar to historical 
observations.  
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We have identified one condition that allows a combat model to be able to produce 
power law data. This is that the model should be sensitive to disorder. But for this 
MANA scenario, the creation of entropy of the distribution of the forces does not 
increase incrementally, unlike other schemes for describing battlefield entropy, such 
as Rodrigues14. Rather, it appears to play the role of a non-linear feedback for the 
model, and leads to a “fractalization” of the distribution of the forces. It is interesting 
to speculate whether such behavior is a necessary condition for emergent behavior. 
Perhaps a useful definition for emergent behavior is a system that displays such 
“fractalized” behavior. 

Using ideas based on fractal geometry, it was possible to construct a convenient 
framework for understanding how a military unit copes with disorder. We hypothesize 
that disorder is created at the lowest levels (individual soldiers) and spreads up the 
chain of command. If the unit has no robust command structure, or that structure is 
placed under too much stress, then the unit literally flies apart (into an uniformly 
random distribution). If not, then the interaction between forces distorts the original 
configuration into patterns more appropriately described by fractals than by lines and 
columns. The properties of this distribution are that entropy (disorder) is neither 
minimal nor maximal, and depends on the resolution at which the system is examined. 

This can be seen in terms of the MANA model runs described here. At the highest 
level is the information represented by the overall commander’s “plan”, i.e. the initial 
distribution of forces and the goal applying across the entire grid. The intermediate 
command level is represented by the behavior rules that require automata to support 
each other in advancing. These rules apply on scales of tens of cells. The lowest level 
of command is represented by random variations in the initial positions of the 
automata and the random element in the movement algorithm. These only apply to the 
cells immediately adjacent to the automata. 

The idea that disorder starts at the bottom and works its way up to the top makes a 
nice analogy with turbulent cascade dynamics. For that case, phenomenologically, 
energy is introduced at the largest (forcing) scale, and “cascades” down to the 
molecular dissipation scale through a series of eddies of ever decreasing size. The 
military analogy is that order is created at the highest level, but destroyed at the lowest 
level, with a series of intermediate levels acting as barriers between the two. If so, it 
suggests that the lowest ranks may most heavily influence the quality of the command 
structure. 

This leads us to construct an alternative view of warfare. The most potent force is the 
one with the best command structure. The objective of war is to create enough 
disorder to unravel the opposition’s command structure. Weapons are one instrument 
for doing this. A laterally minded commander might well employ several other 
methods, such as maneuver and shock.  

This offers an explanation as to why apparently very similar armies perform 
dramatically differently on the battlefield. Perhaps a historical example of this is the 
defeat of Darius III by Alexander the Great. Both sides were armed with similar 
weaponry, and Alexander’s forces were significantly outnumbered. Yet Darius’ forces 
fell to pieces in the heat of battle. This is strongly suggestive of a lack of cohesion in 
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Darius’ army, so that it was vulnerable to the creation of disorder within its ranks. 
Although Darius’ army no doubt had a hierarchy, the question is whether Darius’ 
officers were competent enough to prevent disorder spreading up the command chain.  
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Figure 1: Variation of I∆  as a function of time for cases i and ii. 
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Figure 2: The power spectrum for each case. 
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Figure 3: Value of the second-order moment as a function of the resolution of the data. 
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Figure 4: The function K(q) for case ii. 
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Figure 5: Case ii shows a –1 power law distribution for the number of data points 

exceeding some value of I∆ . 
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Figure 6: A MANA model run illustrating the transition from minimal to maximum 

entropy for the Blue force, via an intermediate “fractal” stage. 
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